A Control Design Approach for Controlling an Autonomous Vehicle with FPGAs
نویسندگان
چکیده
This paper describes the implementation of a platform based on reconfigurable architecture and on concepts of virtual instrumentation and its application to the hands-free driving problem. The novelty of this approach is the use of both reconfigurable systems (for developing the car’s controller) and virtual instrumentation issues for developing a high-level abstraction testing and simulation environment. The implemented platform permits (a) to control directly the real vehicle using control commands that are sent using a keyboard and (b) to simulate the control process in a virtual environment, using a virtual instrumentation approach. The car control system was developed in a microcontroller with several peripheral embedded in a Field Programmable Gate Array (FPGA). The communication between the FPGA-based control system and the car is accomplished through an electronic module, which comprises several insulating and power circuit boards. The virtual instrumentation approach (for simulation and controller design objectives) was used for implementing a high-level abstraction simulation environment in LabVIEW tool, which allows representing the movement of the car in real time. The communication between the simulator and the controller is accomplished through a serial interface in which a RS-232 based protocol was implemented. The user can send commands to the control system through a keyboard with a PS2 interface. This approach opens a great variety of possibilities to validate and simulate solutions for several problems in robotic and mechatronic areas. The tests and initial overall system validation were accomplished in the simulator environment. Then, the simulation results were compared with the movement variables of the real car, which were gathered in real time. This approach makes possible to test and to validate the control system with low cost and more safety.
منابع مشابه
Autonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach
Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملIntelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach
There is a growing interest in the modeling and control of model helicopters using nonlinear dynamic models and nonlinear control. Application of a new intelligent control approach called Brain Emotional Learning Based Intelligent Controller (BELBIC) to design autopilot for an autonomous helicopter is addressed in this paper. This controller is applied to a nonlinear model of a helicopter. This...
متن کاملAn adaptive modified fuzzy-sliding mode longitudinal control design and simulation for vehicles equipped with ABS system
In order to improve the safety and longitudinal stability of a vehicle equipped with standard ABS system, this paper, analyzes the basic principles of vehicles stability and proposes a control strategy based on fuzzy adaptive control which will adjust PID gain parameters, using genetic algorithm. A linear three-degree-of-freedom (DOF) vehicle model was set up in Simulink and the stability test ...
متن کاملModeling and Intelligent Control System Design for Overtaking Maneuver in Autonomous Vehicles
The purpose of this study is to design an intelligent control system to guide the overtaking maneuver with a higher performance than the existing systems. Unlike the existing models which consider constant values for some of the effective variables of this behavior, in this paper, a neural network model is designed based on the real overtaking data using instantaneous values for variables. A fu...
متن کاملDesign of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective
In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCP
دوره 5 شماره
صفحات -
تاریخ انتشار 2010